
Git and GitHub
Dan McDonald, PhD

Information Systems and Technology
Utah Valley University

Octocat

Agenda

● Git Overview
● Git Content Tracking
● Git Branches
● Git Rebasing
● Distributed Version Control

Git and GitHub

● GitHub is a code hosting platform for version control and
collaboration

● Git was created by Linus Torvalds
● A Distributed Revision Control System
● GitHub is a development platform used by 31 million

developers

GitHub Concepts
● Repository - used to organize a single project

○ contains folders, images, videos, spreadsheets, etc
○ recommended to include a README file

● Commit
○ Adds content from staging area to Git database (saved changes)

● Branch
○ A way to work on different versions of a repository at one time

● Open a Pull Request
○ A way to propose your changes to others

● Merge a Pull Request

How Git Works

● Presentation is adapted from a Pluralsight course by
Paolo Perrota titled "How Git Works"

Porcelain Commands

● git add
● git commit
● git push
● git pull
● git branch
● git checkout
● git merge
● git rebase

Plumbing Commands

● git cat-file
● git hash-object
● git count-objects

Git is like an onion

● To become a Git master, understand the model, not just
the commands

● a Distributed Revision Control System

Peeling back a layer of the onion

● A Revision Control System (forget about Distributed)
○ branches
○ merges
○ rebases

Peeling back another layer

● a Stupid Content Tracker
○ tracks content files or directories
○ still has versioning and commit

Git Core

● At the core, Git is a persistent map (Stupid content)
○ No versioning or commit
○ A simple persistent map that maps keys to values

Git is a Map with Values and Keys

● A table with values and keys
● Values are sequences of bytes
● Given a value, Git creates a key (hash)
● Git uses SHA1 algorithm

○ 20 bytes in hexadecimal format
○ 40 hex digits

SHA1

● Every piece of content/directory has its own SHA1
● There is only 1 hash for string "Apple Pie"

Keys are SHA1s and Values are content

● Every object in Git has its own SHA1
● Putting "Apple Pie" in a file and store the file in Git, then

the SHA1 we just generated will identify the file
● Directories and commits have their own SHA1
● What happens if the SHA1 collide?

○ Not likely (chance of winning lottery 6 consecutive times)
○ SHA1 are unique in the universe
○ You could put all the data you every wrote in your life in the same

Git repository and Git would assign a unique SHA1 to each
version of each file and each folder

Git as a persistent map

● Not enough just to create the SHA1, we must store it
● It gets stored in a repository
● create a repository in a folder

● now save the hash

Git as a persistent map

● Where did the SHA1 go?
○ The folder name is the first 2 characters of the SHA1

○ The file name is the remaining digits of the SHA1
○ This is a trick to avoid files piling up inside the same directory
○ Inside the file is the original "apple pie" data
○ This is what Git calls a blob of data (a generic piece of content)

Git is a Persistent Map

● The content in the file name has been mangled a bit
○ Git added a small header
○ Git compressed the content
○ We can't just open the file

● We can run a low-level command to see the content

Git as a Stupid Content Tracker

● Create a directory called cookbook
● Inside the directory, create a file called menu.txt and a folder

called recipes
○ menu.txt should just contain the text "Apple Pie"

● Inside the recipes folder, create a file called README.txt and
a file called apple_pie.txt

● README.txt should contain the text "Put your recipes in this
directory, one recipe per file"

● Inside the apple_pie.txt file, put the text "Apple Pie"

Git as a Stupid Content Tracker

mkdir cookbook
cd cookbook
echo Apple Pie>menu.txt
mkdir recipes
cd recipes
echo Apple Pie>apple_pie.txt
echo Put your recipes in this directory, one recipe
per file.>README.txt
cd ..
tree .
git init

Run git status

● The object database is emtpy

● To commit a file, it has to be in the staging area first
○ Staging area is like a launch pad
○ Whatever is in the staging area will get in the next commit

Run git add

● Using git add

● Using git commit

Examine the commit

● Staging area is now clean

● Run git log to see existing commits

● Note the start of the commit hash (i.e. 45)

Digging deeper

● Go into the objects database

● The commit is compressed just like a blob
● Run git cat-file

What is a commit?

● It is a simple short piece of text
● Git generates the text and stores it like a blob

○ Git generates its SHA1
○ Git adds a small header to the text to identify it as a commit
○ Git compresses the text
○ Git stores it as a file in the object database

● The commit text contains metadata about the commit
○ author, committer, date

● The commit also contains the SHA1 of a tree

What is a tree?

● A tree is a directory stored in Git
● The commit is pointing at the root directory of the project
● What does the tree look like?

○ A list of SHA1
○ In our case, a blob and another tree
○ shows the names
○ shows access permissions

What is a tree?

● Now git cat-file the recipes directory

● So, a blob is not really a file, it is the CONTENT of a file
● The filename and file permissions are not stored in the

blob, but rather in the tree that points to the blob
● If a blob is the same, then it is reused

The Object Database

Git Versioning

● First, add another food to the menu.txt file
● Run git status and see the changed file
● Run get add
● Run git status

Git Versioning

● Run git commit -m "Add cake"
● Run git status
● Run git log
● Run cat-file

The second commit

● The new commit has a parent
● The parent is the first commit

● commits are linked, most commits have a parent
● The tree in the second commit is a brand new tree

The second commit

Changes to big files

● Git creates a new hash when file content changes
● What if you have a very large file with a small change?
● Git does do a level of optimizations

○ Sometimes only the difference between files is stored
○ Compress multiple objects in the same physical file
○ The optimizations produce the info and pack folders

● However, what is most important is that each commit,
blob, or tree are hashed and put into the database as
separate separate files

Git tags

● A tag is like a label for the current state of the project
● Regular tags
● Annotated tags

○ Come with a message
○ command: git tag -a mytag -m "I love cheesecake"
○ Also an object in git's object database

Git Objects

● Blobs - arbitrary content
● Trees - the equivalent of directories
● Commits - references to blobs, trees, and meta-data
● Annotated Tags

Git is like a versioned filesystem

● Git is like a filesystem with commits which give it versioning

Revision Control System

● Git is a Revision Control System
○ Branches - Git creates a branch (master) when we do our first

commit
○ Merges

Looking for Branches

● Git puts branches in directory refs/heads

● The contents of master is the SHA1 of the commit

What is a branch

● We have 2 linked commits in our project
● We have a master branch
● The branch is a simple reference to a commit

○ That is why the directory is called refs
○ You could actually rename the branch

● Create a new branch

The New Branch

● The new branch "lisa" has the same SHA1 as master

● We have 2 branches pointing at the same commit

The current branch

● The branch with an asterisk (*) is the current branch
● There is only one current branch
● The current branch is recorded by the HEAD file

Change some files

● Update the recipes/apple_pie.txt file with some ingredients

● The master file now points to a new
commit

● The HEAD did not change
● lisa is still pointing at other commit

Apple Pie

pre-made pastry
1/2 cup butter
3 tablespoons flour
1 cup sugar
8 Granny Smith apples

>git status
>git add recipes/apple_pie.txt
>git commit -m "Add recipe"
>git log

Changing the current branch

● command: git checkout lisa
● Our working area changed

to the content of the commit
pointed at by lisa

● Checkout means
move HEAD and update WORKING AREA

Make a Recipe into the lisa version

● Update the lisa branch (which is the current branch) file
of recipes/apple_pie.txt

>git status
>git add recipes/apple_pie.txt
>git commit -m "Add Lisa's version of the pie"
>git log

Apple Pie

pre-made pastry
1/2 cup butter
3 tablespoons flour
1 cup sugar
1 tbsp cinnamon
10 Granny Smith apples

What changed

● HEAD did NOT change
● Master did NOT change
● lisa did change so that

it points to the new commit
● Branches are just references

to commits that is all they are

Move back to Master Branch

● Command: git checkout master
● The branches did not move, but HEAD did move
● The content has been

switched back to our
version of the recipes

● Let's say we like Lisa's version of the apple pie better than
our own

● Time to merge

Merging the branches

● Command: git merge lisa
● We need to open

apple_pie.txt
and fixed the
conflicts

Resolving conflict

● Once conflicts have been resolved, we must git add
● git add apple_pie.txt

● git status
● git commit
● The commit tells git

conflicts resolved
● Git automatically

creates the commit
message for us

What is a merge?

● A merge is just a commit with 2 parents
● Run git log to get the SHA1 of the merge
● Command: git cat-file -p 15b8b6
● Note the 2

parents

Merge is just a commit with 2 parents

● Git created a new commit with
2 parents to represent the merge

● Git moved master to point to the
new commit

Adding trees and blobs to manage history

● Objects in git db are commits, trees, blobs, and tags
● They are arranged in a graph with references to each

other
● References

○ between COMMITS track HISTORY
○ between OTHER OBJECTS track CONTENT

History and Content

Commits Trees Blobs

object reachable
from more than 1
commit

object reachable
from more than 1
commit

Blobs

History and Content

● When you checkout something, it doesn't care about history,
just trees and blobs

● Just the tree in
the commit and
all the objects
that can be
reached from there

● This info replaces
content of working directory

Merge commits
● Are NOT really more complicated
● They have multiple parents = the definition of a merge
● If you check out, git does NOT really care how many parents
● With a checkout, git just goes in and

gets the current tree
● Git does NOT care in which commit

the object was created
● Git reuses objects that are already there

and creates the objects that are not there

Git working area

● We should focus on history (how commits connect) and let
Git do the right thing with trees and blobs

● Git does not really care too much about our working area
● When you checkout, Git just replaces the object
● Git cares about the objects in the database
● Objects in the database are immutable and persistent
● Working directory files are transient
● Git will give you a warning before overwriting files that

have not been committed.

Special case of a merge

● Check out lisa branch: git checkout lisa
● We previously merged lisa into master
● Now we want to merge master into lisa
● We could create a new commit with the two parents, like

other merges and have lisa point at the new commit
● However, the conflicts between master and lisa have

already been resolved
● Git just moves lisa branch to point at master commit
● This is called a Fast Forward

Called a Fast Forward

● Fast forward is Git bragging about keeping the number of
objects in the objects database under control and keeping
your project history cleaner

Detached Head

● Command: git checkout master
● HEAD is a reference to a branch which is a reference to

a commit
● When you checkout a branch, you are changing HEAD
● You can directly checkout a commit instead of a branch

Detached HEAD

Update Apple Pie Recipe

● Change 9 apples to 20 apples

● Now remove sugar ingredient

>git status
>git add recipes/apple_pie.txt
>git commit -m "Add more apples"
>git log

>git status
>git add recipes/apple_pie.txt
>git commit -m "Remove sugar"
>git log

Abandon experiment (rollback commits)

● Command: git checkout master
● HEAD is back where it belongs
● Commits are still in object database
● The commits are isolated

○ No branch
○ Can only be reached by SHA1

● The object will be garbage collected eventually

Record experiment

● Navigate to the commit now via the SHA1
● Checkout the commit using the SHA1

● Now put a branch on it: git branch nogood

Detached HEAD as a useful tool

● This is a common way to use a detached head
● Do your experiment
● Commit your experiment as much as you wish
● Decide whether to keep the experiment or not
● Just put a branch on what you want to keep

Git Object Model

● Branch is a reference to a commit
● HEAD is a reference to a branch
● Three Git Rules

○ The current branch tracks new
commits

○ When you move to another
commit, Git updates your working
directory

○ Unreachable objects are garbage collected

Rebasing

● Not a common feature among versioning systems
● Git's signature feature

Make some new commits to master
>git checkout master
>git checkout master

#file apple_pie.txt
Apple Pie

pre-made pastry
1/2 cup butter
3 tablespoons flour
2 cup sugar
1 tbsp cinnamon
9 Granny Smith apples

>git add apple_pie.txt
>git commit -m "More sugar"

#file apple_pie.txt
Apple Pie

pre-made pastry
1/2 cup butter
3 tablespoons flour
2 cup sugar
2 tbsp cinnamon
9 Granny Smith apples

>git add apple_pie.txt
>git commit -m "More Cinnamon"

Create a new branch "spaghetti"

>git branch spaghetti
>git checkout spaghetti

#file menu.txt
Spaghetti alla Carbonara
Apple Pie
Cheesecake

#file
recipes/spaghetti_alla_carbonara.txt
Spaghetti alla Carbonara

1 point spaghetti
2 tablespoons oil
4 ounces diced bacon
1 onion
3 eggs
1 cup parmesan cheese
1 handfull parsley
salt and pepper

>git add menu.txt
>git add recipes/spaghetti_alla_carbonara.txt
>git commit -m "New Spaghetti Recipe"
>git log

After changes

Options

Merge? Rebase spaghetti branch

● git looks for the first
commit in spaghetti
that is also a
commit in master

● git then detaches
the branch and
moves it

Rebase commands

● Currently checkout branch = spaghetti
● There is just one commit that gets applied on top of

master (or 2 commits if you did it that way)

● We might have to resolve conflicts if there are any

Rebase Master as well

● Checkout master
● We have all the commits related to

spaghetti and master all in the same
history

What really happens with rebase

● commits are immutable
● Branches are copied (with new

parent data), NOT moved
● Rebasing creates new commits
● Unreachable

objects will
be garbage
collected

NO YES

Why Rebase over Merge

● Merge preserves history
● Merge commits include resolving

conflicts
● Merge history never lies
● A project with a lot of rebasing

looks clean
● Rebases refactor history
● Rebase history can be deceiving
● When in doubt, just merge

yellow
commits did
not take
place
before blue

Tags - a part of versioning

● One of four git database objects
● Two types of tags

○ Annotated tags (date, author, description)
○ Non-annotated tags or lightweight tags (simple label)

Tags are saved in git database

● Tags look like branches, but unlike
branches, they don't move

● Tags are just a SHA1
● Tags reference commits
● Tags stick to the same commit

forever

Recap

● From Stupid Content Tracker to Revision Control
System

● Branches, merges, rebases, tags to handle versioning

Distributed Revision Control System

● We now have a repo in the cloud:
GitHub

● Our local repo is the green square
● Command: git clone

Cloning Time
● Time to clone a project

○ Git created an empty directory for cookbook
○ Git copies the .git directory from GitHub to local directory
○ In later GitHub versions, only copies objects from the master branch
○ After the git database was downloaded, git checks out the master branch

and rebuilds it in the working area
○ We now have a copy of the project and its history on local computer

Multiple Clones

● We now have two clones of the project
that are equally good

● Git is not like Subversion that needs a
centralized server and everyone must
talk to that server

Clone Wars

● You can have as many clones
as you want synchronizing
with each other

● One clone can still be the
most important one

● It is a good idea to have a
well-known reference copy
that everyone synchronizes
with (social issue)

.git/configure

● Useful for Git to remember the repo it cloned
● Git added a few configuration lines when we issued

the git clone command
● vim .git/configure
● Other copies of the same repository are called a

remote
● There is a default remote called origin

Local Git remembers

● Which other repos (remote) we want to synchronize with
● To synchronize, git needs to know the current state of origin

○ which branches are on the remote
○ which commits the branches are pointing at

● Git does store that information as well

Local Git remembers

● Git tracks remote branches exactly like it tracks local
branches

● Git writes those branches as references in the refs folder
● The origin folder contains references to branches, tags,

and the current HEAD pointer of origin
● Git automatically updates this information when we

connect to a remote

Local Git

● Some of the references are sometimes included in the
packed-refs file as an optimization

● All branches, local or remote are still references to a
commit

Branches are references to commits

● Command: git show-ref master shows references to
all commits with master in their name

● Note the two master references are still pointed at the
same commit, lisa branch is different

Branch references a commit

● Local branch in git is a reference to a commit
● Remote branch is the same thing
● Whenever you synchronize with the remote, Git updates

remote branches

Synchronizing Repos

● SHA1 are unique in the universe
● Synchronization is about getting

the same objects on all the clones
● All objects are immutable and

have a unique SHA1
● Git has to also keep the branches

synchronized on the clones
○ THIS can be tricky

added blobs/trees

Adding a branch

● Command: vi recipes/apple_pie.txt
● Change the amount of lemon juice in the recipe

● A few new objects in the database
○ A new blob to represent the file changed
○ A new tree to represent the updated project root folder
○ A new commit

>vi recipes/apple_pie.txt
>git add recipes/
>git status
>git commit -m "Add lemon juice to the apple pie"

Local and remote branches differ

● The local and remote master branches are now different

● Lets send the new objects and updated branch to the
origin

● The remote branch is
updated

>git push

Synchronizing Repos
● We can't just write changes to the remote, we have to

read changes from the remote as well

Synchronizing with a Remote

● We pulled from the remote repo
● We made a commit locally, but

someone else made a commit
remotely

● We need to fix the conflict on our
own machine before we push

● git push -f (not recommended)
● First we need to fetch the data

○ git fetch

added a commit

somebody else pushed a commit

Better solution: git fetch and git merge

● merges never rewrites history, it only adds commits

git fetch git merge

FETCH + MERGE = PULL

● You "fetch" and
"merge", then you
"push"

● git fetch, followed
by merge = git pull

Pushing and Pulling with Rebasing

● We decide to roll changes from master to lisa using rebase

Another user

Bottom line with rebase

● Never rebase stuff that has been shared with other
repository
○ Never rebase shared commits

● It is okay to rebase non-shared commits

GitHub Features

● A fork is like a clone, but it is a
remote clone

● We can clone the new cloud
project on our local machine so
that we can push to it

● No connection from our project
to the project we forked

GitHub Forking

● If we want to track changes to
the original project, we
explicitly add one (upstream)

● Locally committed changes
can be pushed

● Changes on upstream can be
pulled to our local and then
pushed to origin

● We cannot push to upstream

GitHub Features: Pull Requests

● Not a git feature
● Not even a version control

feature
● A social network feature

Wrap up

● A Persistent Map
● A Stupid Content Tracker of changes to

content and trees
● A Revision Control System: branches,

merges, rebases
● A Distributed Revision Control System:

pulling, pushing, forking

Some Useful Commands
#Useful documentation
https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
#to see the last commit on each branch
git branch -v
#To show branches you have or have not merged
git branch --merged
git branch --nomerged
#Branches you have merged in the master branch can be deleted
git branch -d
git branch -D #This forces deletion

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

