UTAH VALLEY

UNIVERSITY

Git and GitHub

Dan McDonald, PhD
Information Systems and Technology
Utah Valley University

UVU Agenda

Git Overview

Git Content Tracking

Git Branches

Git Rebasing

Distributed Version Control

uvu Git and GitHub ’%4

GitHub is a code hosting platform for version control and
collaboration

e Git was created by Linus Torvalds

e A Distributed Revision Control System

e GitHub is a development platform used by 31 million
developers

U V U GitHub Concepts ’%

e Repository - used to organize a single project

o contains folders, images, videos, spreadsheets, etc
o recommended to include a README file

e Commit
o Adds content from staging area to Git database (saved changes)

e Branch
o A way to work on different versions of a repository at one time

e Open a Pull Request

o A way to propose your changes to others

e Merge a Pull Request

LIV L) How Git Works

e Presentation is adapted from a Pluralsight course by
Paolo Perrota titled "How Git Works"

Paolo Perrotta

@Nusco

uvu Porcelain Commands 5

git add

git commit
git push

git pull

git branch
git checkout
git merge
git rebase

uvu Plumbing Commands

e git cat-file
e (it hash-object
e (it count-objects

uvu Git is like an onion 9

e To become a Git master, understand the model, not just
the commands
e a Distributed Revision Control System

UVU Peeling back a layer of the onion

e A Revision Control System (forget about Distributed)
o branches
o merges
o rebases

uvu Peeling back another layer

e a Stupid Content Tracker

o tracks content files or directories
o still has versioning and commit

u V U Git Core

e Atthe core, Git is a persistent map (Stupid content)
o No versioning or commit
o A simple persistent map that maps keys to values

UVU Git is a Map with Values and Keys

A table with values and keys
Values are sequences of bytes Any sequence of bytes
Given a value, Git creates a key (hash)
Git uses SHA1 algorithm

o 20 bytes in hexadecimal format

o 40 hex digits X
SHA1 hash

UVU sHa

e Every piece of content/directory has its own SHA1
e There is only 1 hash for string "Apple Pie"

Command Prompt

:\Users\10623312>echo "apple pie" | git hash-object
bc1feb0777d240f29d15028256afe8672c6ec96f

:\Users\10623312>

--stdin

“Apple Pie”

v

23991897e13e47ed0adb91a0082¢31c82fe0cbe5

UVU Keys are SHA1s and Values are content

e Every object in Git has its own SHA1

e Putting "Apple Pie" in a file and store the file in Git, then
the SHA1 we just generated will identify the file

e Directories and commits have their own SHA1

e \What happens if the SHA1 collide?

o Not likely (chance of winning lottery 6 consecutive times)

o SHA1 are unique in the universe

o You could put all the data you every wrote in your life in the same
Git repository and Git would assign a unique SHA1 to each
version of each file and each folder

UVU Git as a persistent map

e Not enough just to create the SHA1, we must store it
e |t gets stored in a repository
e create a repository in a folder

Command Prompt

:\Users\10623312\gitdemo>git init ' e
Initialized empty Git repository in C:/Users/10623312/gitdemo/.git/

:\Users\10623312\gitdemo>

e now save the hash

C:\Users\10623312\gitdemo>echo "apple pie" | git hash-object --stdin -w

bc1feb0777d2401f29d15028256afe8672cbec96f

UVU Git as a persistent map

e Where did the SHA1 go?

o The folder name is the first 2 characters of the SHA1

gitdemo > .git > objects b v O

) Name ‘ Date modified Type
bc 1/8/2019 4:31 PM File folder
info 1/8/2019 418 PM File folder
pack 1/8/2019 4:18 PM File folder

The file name is the remaining digits of the SHA1

This is a trick to avoid files piling up inside the same directory
Inside the file is the original "apple pie" data

This is what Git calls a blob of data (a generic piece of content)

O O O O

UVU Git is a Persistent Map

e The content in the file name has been mangled a bit
o Git added a small header
o Git compressed the content
o We can't just open the file

e \We can run a low-level command to see the content

Command Prompt

:\Users\10623312\gitdemo>git cat-file bclfeb0777d240f29d15028256afe8672cbec96f -t
blob

:\Users\10623312\gitdemo>git cat-file bclfeb0777d240f29d15028256afe8672c6ec96f -p

"apple pie"

UVU Git as a Stupid Content Tracker

e Create a directory called cookbook

e Inside the directory, create a file called menu. txt and a folder
called recipes
o menu.txt should just contain the text "Apple Pie"

e Inside the recipes folder, create a file called README . txt and
a file called apple pie.txt

e README. txt should contain the text "Put your recipes in this
directory, one recipe per file"

e Inside the apple pie.txt file, put the text "Apple Pie"

UVU Git as a Stupid Content Tracker

mkdir cookbook

cd cookbook

echo Apple Pie>menu.txt
mkdir recipes

cd recipes

echo Apple Pie>apple pie.txt

echo Put your recipes 1n this directory, one recipe
per file.>README.txt

cd

Lree

glt 1nit

uvu Run git status

e The object database is emtpy

C:\Users\10623312\cookbook>git status
On branch master

No commits yet

Untracked files:

(use "git add <file>..." to include in what will be committed)

nothing added to commit but untracked files present (use "git add" to track)

e To commit a file, it has to be in the staging area first
o Staging area is like a launch pad

o Whatever is in the staging area will get in the next commit

LIVLU) Rungit aaq

Command Prompt

. USIng glt add sers\10623312\cookbook>git add menu.txt

: CRLF will be replaced b¥ LF in menu.txt.

will have its original line endings in your working directory.
\10623312\cookbook>git add recipes/
: CRLF will be replaced b¥.LF in recipes/README.txt. '

will have its original line endings in your working directory.

ng: CRLF will be replaced by LF in recipes/apple_pie.txt.
e will have its original line endings in your working directory.

10623312\ cookbook>git status
Dn branch master

o commits yet

hanges to be committed:
(use "git rm --cached <file>..." to unstage)

e Usinggit commit
:\Users\10623312\cookbook>git commit -m "First commit!"

[master (root-commit) 45ed4ccf] First commit!

Committer: Daniel McDonald <10623312@uvu.edu>

3 files changed, 3 insertions(+)
create mode 100644 menu.txt

create mode 100644 recjpesﬂREAUdE.txt
create mode 100644 recipes/apple_pie.txt

u V L' Examine the commit

e Staging area is now clean

C:\Users\10623312\cookbook>git status
On branch master

nothing to commit, working tree clean

e Rungit log to see existing commits

C:\Users\10623312\cookbook>git log

Author: Daniel McDonald <10623312@uvu.edu>

Date: Wed Jan 9 12:41:34 2019 -0700

First commit!

e Note the start of the commit hash (i.e. 45)

UVU Digging deeper

e (o into the objects database

Name

be
info

pack

e The commitis compressed just like a blob
e Rungit cat-file

:\Users\10623312\cookbook>git cat-file -p 45e4ccfcl1b1352043184d233733a62cd231f5ch3
ree bed4dS5bfce489a2591e7fed5c672f9e52cd695a43
uthor Daniel McDonald <10623312@uvu.edu> 1547062894 -0700

ommitter Daniel McDonald <10623312@uvu.edu> 1547062894 -0700

irst commit!

UVU What is a commit?

e Itis a simple short piece of text

e Git generates the text and stores it like a blob
o Git generates its SHA1
o Git adds a small header to the text to identify it as a commit
o Git compresses the text
o Git stores it as a file in the object database

e The commit text contains metadata about the commit
o author, committer, date

e The commit also contains the SHA1 of a tree

u V L' What is a tree?

e A tree is a directory stored in Git

e The commitis pointing at the root directory of the project

e \What does the tree look like?
o Alist of SHA1
o In our case, a blob and another tree
o shows the names
o shows access permissions

C:\Users\10623312\cookbook>git cat-file -p bed4dS5bhfce489a2591e7fed5c672f9%e52cd695a43

100644 blob 23991897el3e47ed0adb91a0082c31c82felche5 menu.txt
040000 tree 3ee76fde69b730530f1682f1f51789e89cf30500 recipes

u V L' What is a tree?

e Now git cat-file the recipes directory

:\Users\10623312\cookbook>git cat-file -p 3ee76fde69b730530f1682f1f51789e89cf30500
100644 blob 361af858632ee7d8d8f9c4022ccaf61fc8d4799c README . txt

100644 blob 23991897e13e47R0adb91a0082c31c82felches apple_pie.txt

e 350, a blob is not really a file, it is the CONTENT of a file

e The filename and file permissions are not stored in the
blob, but rather in_the tree that points to the blob

e |[f a blob is the same, then it is reused

u V L' The Object Database

Put your recipes

in this

directory, one
O README . txt recipe per file.

3ee’ 361a
recipes/ apple_pie. txt
o

E O menu. txt
1177 be4d \ ‘ Apple Pie\'

2399

u V L' Git Versioning

First, add another food to the menu. txt file
Run git status and see the changed file
Run get add :\Users\10623312\cookbook>git status

n branch master

' hanges not staged for commit:
Run glt StatUS (use "git add <file>..." to update what will be committed)

(use "git checkout -- <file>..." to discard changes in working directory

no changes added to commit (use "git add" and/or "git commit -a")

:\Users\10623312\cookbook>git add menu.txt
warning: CRLF will be replaced bﬁ/.LF in menu.txt. : :
he file will have its original line endings in your working directory.

:\Users\10623312\cookbook>git status
On branch master
hanges to be committed:
(use "git reset HEAD <file>..." to unstage)

u V L' Git Versioning

Run git commit -m "Add cake"

Run git status
Run git log
Run cat-file

C:\Users\10623312\cookbook>git status
On branch master
nothing to commit, working tree clean

C:\Users\10623312\cookbook>git log

Author: Daniel McDonald <10623312@uvu
Date: Wed Jan 9 14:22:13 2019 -0700

Add cake

Author: Daniel McDonald <10623312@uvu
Date: Wed Jan 9 12:41:34 2019 -0700

First commit!

UVU The second commit

e The new commit has a parent
e The parent is the first commit

C:\Users\10623312\cookbook>git cat-file -p b5a2laldd9a3ee9161ced4b3b6f3ef1473d662172
tree 8b8ed28c7f86b14c39dle7befc07030ce692d963

parent 45e4ccfclb1352043184d233733a62cd231f5ch3
author Daniel McDonald <10623312@uvu.edu> 1547068933 -0700
committer Daniel McDonald <10623312@uvu.edu> 1547068933 -0700

Add cake

e commits are linked, most commits have a parent
e The tree in the second commit is a brand new tree

uvu The second commit

Apple Pie
heesecake

fife

Put your recipes
in this

O[README . txt Secii per tii,
2508 6eed 3ee’ 361a
rec1pes/ apple_pie. txt
; O menu. txt
be4d Apple Pie \
C:\Users\10623312\cookbook>git count-objects 2399

8 objects, 0 kilobytes

UVU Changes to big files

Git creates a new hash when file content changes
e \What if you have a very large file with a small change?

e Git does do a level of optimizations
o Sometimes only the difference between files is stored
o Compress multiple objects in the same physical file
o The optimizations produce the info and pack folders

e However, what is most important is that each commit,
blob, or tree are hashed and put into the database as
separate separate files

UVLU aittags

e A tag is like a label for the current state of the project
e Regular tags

e Annotated tags
o Come with a message
o command: git tag —-a mytag -m "I love cheesecake"
o Also an object in git's object database

:\Users\10623312\cookbook>git tag -a mytag -m "I Tove cheesecake"

:\Users\10623312\cookbook>git tag
mytag

:\Users\10623312\cookbook>git cat-file -p mytag
pbject b5a2laldd9a3ee9161ce4b3b6f3ef1473d662172

ype commit

ag mytag

agger Daniel McDonald <10623312@uvu.edu> 1547072024 -0700

T lTove cheesecake

u V U Git Objects

Blobs - arbitrary content

Trees - the equivalent of directories

Commits - references to blobs, trees, and meta-data
Annotated Tags

UVU Git is like a versioned filesystem
O

fife

® —>0O0—0 =0
2108 6eed / 3ee’ 361a

O >

177 be4d\

2399

o Gitis like a filesystem with commits which give it versioning

uvu Revision Control System

e Gitis a Revision Control System
o Branches - Git creates a branch (master) when we do our first
commit

:\Users\10623312\cookbook>g1t branch
o Merges

u V L' Looking for Branches

e Git puts branches in directory refs/heads

cookbook » glt s refs cookboock > .git > refs > heads
Name -.
heads | master
tags

:\Users\10623312\ cookbook) .git\refs\heads>type master

b5a2laldd9a3ee9161ced4b3b6f3et1473d662172

e The contents of master is the SHA1 of the commit

UVU What is a branch

e \We have 2 linked commits in our project
e \We have a master branch
e The branch is a simple reference to a commit

o That is why the directory is called refs master‘>.
o You could actually rename the branch 5720
e Create a new branch

C:\Users\10623312\cookbook>git branch 1lisa .

% "'-..Users"'-._lO'k2 3312\ cookbook>git branch 177
‘ lisa

UVU The New Branch

e The new branch "lisa" has the same SHA1 as master
IC:\Users\10623312\ cookbook #1Skgefg \heads>type lisa
1

bSaZlaldd9a3ee9161ce4b3b6f3e 3d662172

C:\Users\10623312\cookbook\ .git\refs\heads>type master
b5a2laldd9a3ee9161ced4b3b6f3et1473d662172

e \We have 2 branches pointing at the same commit

master>.< lisa

5720

1177

u V U The current branch

e The branch with an asterisk (*) is the current branch
e There is only one current branch

e The current branch is recorded by the HEAD file
:\Users\10623312\cookbook)\ .git>type HEAD

~ef: refs/heads/master

l HEAD) master>.<lisa

5720

1177

U V U Change some files

e Update the recipes/apple pie.txt file with some ingredients

Apple Pie

pre-made pastry

1/2 cup butter

3 tablespoons flour

1 cup sugar

8 Granny Smith apples

e The master file now points to a new
commit

e The HEAD did not change
e lisa is still pointing at other commit

status
add recipes/apple pie.txt

commit -m "Add recipe"
log

[HEAD)| master > @

e268

.< lisa |

5720

1177

u V L' Changing the current branch

e command: git checkout lisa
PY Our Working area Changed IC:\Users\10623312\cookbook>git checkout lisa

Switched to branch 'lisa’

to the content Of the commit E:"'-.‘Users"'-.,10623312"‘-‘.coo|-:bool-;>g1't branch

p0|nted at by I|Sa master
C:\Users\10623312\cookbook>type .git\HEAD
e Checkout means ref: refs/heads/1isa

move HEAD and update WORKING AREA

N
UVU Make a Recipe into the lisa version

e Update the 1isa branch (which is the current branch) file
Ofrecipes/apple_pie.txt

Apple Pie

pre-made pastry

1/2 cup butter

3 tablespoons flour

1 cup sugar

1 tbsp cinnamon

10 Granny Smith apples

status
add recipes/apple pie.txt

commit -m "Add Lisa's version of the pie"
log

u V U What changed

HEAD did NOT change
e Master did NOT change maste> @ @< isa |(HEAD |

e lisa did change so that eZG\Ej /@0”
it points to the new commit
e Branches are just references ge

to commits that is all they are

1177

UVU Move back to Master Branch

e¢ Command: git checkout master
e The branches did not move, but HEAD did move

® The content has been :\Users\10623312\cookbook>git checkout master

Switched to branch 'master’

SWICegTCToRoT=To QU ONOIVIgN <<\ 10623312\ cookbooksgit branch
version of the recipes [

e Let's say we like Lisa's version of the apple pie better than
our own

e Time to merge

UVU Merging the branches

e Command: git merge lisa
iC:\Users\10623312\cookbook>g1i ~ge lis
® We need tO Open ,Atzfo-ﬁgr'gir1g r'ecigagg?a;g?e 8:2 ?irtge e

CONFLICT (content): Merge conflict in recipes/apple_pie.txt
apple ple Qe utomatic merge failed; fix conflicts and then commit the result.

C:\Users\10623312\cookbook>git status
and flxed the On branch master
You have unmerged paths. _ _
(fix conflicts and run "git commit™)

CO”ﬂlCtS (use "git merge --abort" to abort the merge)

Unmer ged paths: .
(use "git add <file>..." to mark resolution)

no changes added to commit (use "git add" and/or "git commit -a")

LTV LJ Resolving confiict

Once conflicts have been resolved, we must git add

: : :\Users\ ¢ (>q1 ~ecipes\ ie.
glt add apple ple . txt :\Users\10623312\cookbook>git add recipes\apple_pie.txt
T :\Users\10623312\cookbook>git status
; On branch master
glt Status ATl conflicts fixed but you are still merging.

(use "git commit" to conclude merge)

gj_t COmmit hanges to be committed:
The commit tells git
ConﬂlCtS reSOIVed [master 15b8b62] Merge branch 'lisa'

Committer: Daniel McDonald <10623312@uvu.edu>
four name and email address were configured automatically based

o Glt automatlca”y pn your username and hostname. Please check that they are accurate.

'ou_can suppress this message by setting them explicitly. Run the
oﬂov.'m%_command and follow the instructions in your editor to edit
i

Creates the Commlt your configuration file:

git config --global --edit

message for US After doing this, you may fix the identity used for this commit with:

git commit --amend --reset-author

:\Users\10623312\cookbook>git commit

UVU What is a merge?

A merge is just a commit with 2 parents

Run git log to get the SHA1 of the merge

Command: git cat-file -p 15b8b6
:\Users\10623312\cookbook>git cat-file -p 15b8b6

Note the 2
ree d975e854a4935db4225e5c5e86F8ba000f5effbc
parentS parent 95bc7c8ef7bbb36ee55f809d80ac713aa74b620b
parent 1c2b51fe9cc287a58adch34db9f7d1d969150d25
author Daniel McDonald <10623312@uvu.edu> 1547240306 -0700
committer Daniel McDonald <10623312@uvu.edu> 1547240306 -0700

Merge branch 'lisa’

uvu Merge is just a commit with 2 parents

e Git created a new commit with .HEAD > master> @)

b
2 parents to represent the merge jc i
e Git moved master to point to the . Ciisa
new commit 268 007f |
5720

|
o,

1177

UVU Adding trees and blobs to manage history

e Objects in git db are commits, trees, blobs, and tags
e They are arranged in a graph with references to each
other

e References
o between COMMITS track HISTORY
o between OTHER OBJECTS track CONTENT

UVU History and Content

Blobs

O :
Commits Trees / Blobs

T >() >O—>0O
O

object reachable
from more than 1
commit

‘>

*/ object reachable
. from more than 1

commit

uvu History and Content

e \When you checkout something, it doesn't care about history,

just trees and blobs O

e Just the tree in / b
all the objects
that can be

e This info replaces O
content of working directory

the commit and @ | ' 5 O 90 9,0
reached from there

U V U Merge commits

Are NOT really more complicated

They have multiple parents = the definition of a merge

If you check out, git does NOT really care how many parents

With a checkout, git just goes in and

gets the current tree

e Git does NOT care in which commit

the object was created

e Git reuses objects that are already there |

and creates the objects that are not there ‘\.—>O\
O

UVU Git working area

We should focus on history (how commits connect) and let
Git do the right thing with trees and blobs

Git does not really care too much about our working area
When you checkout, Git just replaces the object

Git cares about the objects in the database

Obijects in the database are immutable and persistent
Working directory files are transient

Git will give you a warning before overwriting files that
have not been committed.

UVU Special case of a merge

Check out lisa branch: git checkout lisa

We previously merged 1isa into master

Now we want to merge master into lisa

We could create a new commit with the two parents, like
other merges and have lisa point at the new commit
However, the conflicts between master and lisa have
already been resolved

Git just moves 1isa branch to point at master commit

This 1s called a Fast Forward

UVU Called a Fast Forward

e Fast forward is Git bragging about keeping the number of
objects in the objects database under control and keeping
your project history cleaner

:\Users\10623312\cookbook>git merge master
Updating 1lc2b51f..15b8b62
Fast-forward

reciqesﬂapp]e_pie.txt 2

1 file changed, 1 insertion(+), 1 deletion(-)

UVU Detached Head

Command: git checkout master
e HEAD is a reference to a branch which is a reference to
a commit
e \When you checkout a branch, you are changing HEAD
e You can directly checkout a commit instead of a branch

UVU Detached HEAD

:\Users\ L=c00')oo*-g
Note: check1ng out '15b8b6’

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you ma{

do so (now or later) by using -b with the checkout command again. Example

git checkout -b <new-branch-name>

HEAD is now at 15b8b62 Merge branch 'lisa

:\Users\10623312\cookbook>git branch

11sa
master

J

master >. {_HEAD

eche

UVU Update Apple Pie Recipe

e Change 9 apples to 20 apples gf HEADH
status l
add recipes/apple pie.txt
commit -m "Add more apples" g&
log
e Now remove sugar ingredient @ CHew,

status
add recipes/apple pie.txt .
commit -m "Remove sugar" a8tf

log

. master >.

eche

UVU Abandon experiment (rollback commits)

O

e¢ Command: git checkout master 7160

e HEAD is back where it belongs ®

e Commits are still in object database atf
e The commits are isolated

,'_HEAD)I master >.

o No branch ecbe

o Can only be reached by SHA1
e The object will be garbage collected eventually

u V L' Record experiment

e Navigate to the commit now via the SHA1
e Checkout the commit using the SHA1

:EUsersElO6233123cookbook>git checkout 5c01386
Note: checking out '5c01386°.

You are in 'detached HEAD' state. You can look around, make experimental
changes and commit them, and you can discard any commits you make in this
state without impacting any branches by performing another checkout.

If you want to create a new branch to retain commits you create, you ma¥
do so (now or later) by using -b with the checkout command again. Example:

git checkout -b <new-branch-name>

HEAD is now at 5c01386 Remove sugar

e Now putabranchonit: git branch nogood

‘ nogood > .

7160

a8tf

| _HEAD >{ master >.

eche

UVU Detached HEAD as a useful tool

This is a common way to use a detached head
Do your experiment

Commit your experiment as much as you wish
Decide whether to keep the experiment or not
Just put a branch on what you want to keep

u V U Git Object Model

e Branch is a reference to a commit O

e HEAD is a reference to a branch [branch2> Q/
e Three Git Rules T

O

/7®
The current branch tracks new l O/®

commits [HEAD > [branch > @——> O

When you move to another \@
commit, Git updates your working

directory

Unreachable objects are garbage collected

u V L' Rebasing

e Not a common feature among versioning systems
e Git's signature feature

UVU Make some new commits to master

>git checkout master |

>

>git add apple pie.txt
>git commit -m "More sugar"

>git add apple pie.txt
>git commit -m "More Cinnamon"

#file apple pie.txt
Apple Pie

pre—-made pastry

1/2 cup butter

3 tablespoons flour

2 cup sugar

1 tbsp cinnamon

9 Granny Smith apples

#file apple pie.txt
Apple Pie

pre-made pastry

1/2 cup butter

3 tablespoons flour

2 cup sugar

2 tbsp cinnamon

9 Granny Smith apples

UVU Create a new branch "spaghetti”

>glt branch spaghetti

>git checkout spaghetti

add menu.txt
add recipes/spaghetti alla carbonara.txt

commit -m "New Spaghetti Recipe"
log

#file menu.txt

Spaghetti alla Carbonara
Apple Pie

Cheesecake

#file
recipes/spaghetti alla carbonara.txt
Spaghetti alla Carbonara

point spaghetti
tablespoons oil
ounces diced bacon
onion

eggs

cup parmesan cheese
handfull parsley
salt and pepper

B oRWw e s N e

u V L' After changes

master> O ’ @aghetti

|
Q ©

\./

l

Merge? Rebase spaghetti branch
(aghett B ' <spaghettih

° it looks for the first
Ty i it ok for e s

@ .
l l l that |s_f1!so a t
commit in master
O ‘ O e (it then detaches
l the branch and
\ / O moves it
@) N

l T

u V L' Rebase commands

e Currently checkout branch = spaghetti
e There is just one commit that gets applied on top of
master (or 2 commits if you did it that way)

:\Users\10623312\ cookbook>git branch
lisa

master k
nogood

:\Users\10623312\cookbook>git rebase master
First, rewinding head to replay your work on top of it.

App1y1ng New Spaghetti Recipe

e \We might have to resolve conflicts if there are any

UVU Rebase Master as well

e Checkout master <spagh&;tti

e \We have all the commits related to
spaghetti and master all in the same
history

:\Users\10623312\ cookbook>checkout master

]] . - .

checkout' is not recognized as an internal or external command,
operable program or batch file.

:\Users\10623312\cookbook>git checkout master
Switched to branch 'master’

:\Users\10623312\cookbook>git rebase spaghetti
First, rewinding head to replay your work on top of it.
Fast-forwarded master to spaghetti.

uvu What really happens with rebase

e commits are immutable @ obranch] @<obranch]
e Branches are copied (with new l l |
parent data), NOT moved & NO O YES

e Rebasing creates new commits | l

o Unreachable © - @ <branch] O @@ ©
objects will l l l l l
begarbage @O O O @ ©
collected \.‘/ \‘. \.‘/

| .l l

uvu Why Rebase over Merge

e Merge preserves history Rebase Merge

e Merge commits include resolving
conflicts

e Merge history never lies

e A project with a lot of rebasing
looks clean

e Rebases refactor history

e Rebase history can be decelving

e \When in doubt, just merge

yellow
commits did

N
not take O @
place l ‘L

o O

S

before blue

>
i

UVU Tags - a part of versioning

e One of four git database objects

e Two types of tags
o Annotated tags (date, author, description)
o Non-annotated tags or lightweight tags (simple label)

:\Users\10623312\cookbook>git tag dinner

C:\Users\10623312\cookbook>gi1t tag
dinner
mytag

UVU Tags are saved Iin git database

e Tags look like branches, but unlike

branches, they don't move cookbook > .git » refs > tags
e Tags are just a SHA1 | A
_ Name [k
e Tags reference commits
e Tags stick to the same commit difner
forever 3l nng

C:\Users\10623312\cookbook\ .git\refs\tags>type dinner

6c36¢c2173216a3ed9c51td7c3944bad4626083789d

U V L' Recap

e From Stupid Content Tracker to Revision Control
System
e Branches, merges, rebases, tags to handle versioning

UVU Distributed Revision Control System

e \We now have a repo in the cloud: Multiple Repos

GitHub
e Our local repo is the green square
e¢ Command: git clone

u V L' Cloning Time

Time to clone a project

O O O O

:\Users\10623312>mkdir demo

:\Users\10623312>cd demo

:\Users\10623312\demo>git clone https://github.com/nusco/cookbook.git
loning into 'cookbook'...
remote: Enumerating objects: 47, done.
remote: Total 47 (delta 0), reused 0 (delta 0), pack-reused 47
Unpacking objects: 100% (47/47), done.

Git created an empty directory for cookbook

Git copies the .qgit directory from GitHub to local directory

In later GitHub versions, only copies objects from the master branch
After the git database was downloaded, git checks out the master branch
and rebuilds it in the working area

We now have a copy of the project and its history on local computer

u V L' Multiple Clones

e We now have two clones of the project Multiple Repos
that are equally good . |
e Gitis not like Subversion that needs a j }«
centralized server and everyone must |
talk to that server i | Ll

u V U Clone Wars

e You can have as many clones Multiple Repos
as you want synchronizing — A~
with each other C) l

e One clone can still be the
most important one

e |tis agood idea to have a
well-known reference copy
that everyone synchronizes
with (social issue)

u V L' .git/configure

e Useful for Git to remember the repo it cloned

e Git added a few configuration lines when we issued
the git clone command

¢ vim .git/configure

e Other copies of the same repository are called a

remote
e There is a default remote called origin
[remote "origin™] m
url = https://github.com/nusco/cookbook.git .

fetch = +refs/heads/*:refs/remotes/origin/*

UVU Local Git remembers

e Which other repos (remote) we want to synchronize with

e To synchronize, git needs to know the current state of origin
o which branches are on the remote
o which commits the branches are pointing at

e Git does store that information as well
$ git branch --all

-> origin/master

UVU Local Git remembers

Git tracks remote branches exactly like it tracks local
branches

e Git writes those branches as references in the refs folder

e The origin folder contains references to branches, tags,
and the current HEAD pointer of origin

e Git automatically updates this information when we
connect to a remote

$ 1s -1 refs/remotes/
total O
drwxr-xr-x 1 10623312 1049089 0 Jan 15 13:06

uvu Local Git

e Some of the references are sometimes included in the

packed-refs file as an optimization
e All branches, local or remote are still references fo a

commit

UVU Branches are references to commits

e¢ Command: git show-ref master shows references to
all commits with master in their name

$ git branch --all

-> origin/master

|

~/demo/cookbook (master)
$ git show-ref master
/0418215e2925fbdc0319874d35ceb696c21e9a3d refs/heads/master
/0418215e2925fbdc03f9874d35ceb696c21e9a3d refs/remotes/origin/master

e Note the two master references are still pointed at the
same commit, lisa branch is different

UVU Branch references a commit

Local branch in git is a reference to a commit

e Remote branch is the same thing

e \Whenever you synchronize with the remote, Git updates
remote branches

uvu Synchronizing Repos

SHA1 are unique in the universe Synchronizing Repos
° Synchronlzatlon IS about getting

the same objects on all the clones 00
e All objects are immutable and

have a unique SHA1
e Git has to also keep the branches

synchronized on the clones

o THIS can be tricky ’ ®
added blobs/trees €%

UVU Adding a branch

e Command: vi recipes/apple pie.txt
e (Change the amount of lemon juice in the recipe

>vi recipes/apple pie.txt
>git add recipes/

>git status
>git commit -m "Add lemon Jjuice to the apple pie"

e A few new objects in the database
o A new blob to represent the file changed
o A new tree to represent the updated project root folder
o A new commit

UVU Local and remote branches differ

e The local and remote master branches are now different

$ git show-ref master
943f6/fefaab85ff114acf0/c92f9ef8/72b/7db2 refs/heads/master

7041821t5e2925fbdc031t9874d35ceb96c21e9a3d refs/remotes/origin/master
e |ets send the new objects and updated branch to the
origin

e [he remote branch is
updated

UVU Synchronizing Repos

e \We can't just write changes to the remote, we have to
read changes from the remote as well

> oo B oo I
AN

UVU Synchronizing with a Remote

somebody else pushed a commit

master
®—

| origin
added a commit
local e
origin/master |

We pulled from the remote repo
We made a commit locally, but
someone else made a commit
remotely

We need to fix the conflict on our
own machine before we push
git push -f (notrecommended)

First we need to fetch the data
o git fetch

uvu Better solution: git fetch and git merge

Lorigin

[local

git fetch

master

o-— O

=

L4

| origin/master

il

| origin

local

git merge

I master
~—@

| master
origin/master | ~

Mg

e merges never rewrites history, it only adds commits

LIVVLJ FETCH+MERGE = PULL

e You "fetch" and
"merge", then you
"oush"

e git fetch, followed
by merge = git pull

Lorigin

local

o &
(R

™. .mml

LIV LJ Pushing and Pulling with Rebasing

e \We decide to roll changes from master to lisa using rebase

[master][fisa_] [master][lisa_]
i o /.‘_ : /.<___ :
origin .\llisa |) origin &) origin o
:> |master|| lisa_|
o /.<— ! Another user /.
local .<|Iisa] local | @ annie \ ;’Ea}\j

UVU Bottom line with rebase

e Never rebase stuff that has been shared with other
repository
o Never rebase shared commits

e |tis okay to rebase non-shared commits

u V U GitHub Features

e A forkis like a clone, butitis a
remote clone

e \We can clone the new cloud al
project on our local machine so
that we can push to it ::] I

e No connection from our project [Purelsight/niceproject nusco/niceproject
to the project we forked |

| origin

{
l)
i

uvu GitHub Forking

e Ifwe wanttotrack changesto —/
the original project, we B
explicitly add one (upstream) [_J

e Locally committed changes
can be pushed

e Changes on upstream can be
pulled to our local and then
pushed to origin

e |We cannot push to upstream

upstream

UVU GitHub Features: Pull Requests

e Not a git feature
e Not even a version control

feature
e A social network feature

upstream

uvu Wrap up

A Persistent Map

e A Stupid Content Tracker of changes to
content and trees

e A Revision Control System: branches,
merges, rebases

e A Distributed Revision Control System:
pulling, pushing, forking

UVU Some Useful Commands

#Useful documentation
https://qit-scm.com/book/en/v2/Getting-Started-About-Version-Control
#to see the last commit on each branch

git branch -v

#To show branches you have or have not merged

git branch --merged

git branch --nomerged

#Branches you have merged in the master branch can be deleted
git branch -d

git branch -D #This forces deletion

https://git-scm.com/book/en/v2/Getting-Started-About-Version-Control

